1N5913B Series

3 W DO-41 Surmetic 30 Zener Voltage Regulators

This is a complete series of 3 W Zener diodes with limits and excellent operating characteristics that reflect the superior capabilities of silicon-oxide passivated junctions. All this in an axial-lead, transfer-molded plastic package that offers protection in all common environmental conditions.

Features

- Zener Voltage Range - 3.3 V to 200 V
- ESD Rating of Class 3 ($>16 \mathrm{KV}$) per Human Body Model
- Surge Rating of 98 W @ 1 ms
- Maximum Limits Guaranteed on up to Six Electrical Parameters
- Package No Larger than the Conventional 1 W Package
- Pb-Free Packages are Available

Mechanical Characteristics

CASE: Void free, transfer-molded, thermosetting plastic FINISH: All external surfaces are corrosion resistant and leads are readily solderable

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES:

$260^{\circ} \mathrm{C}, 1 / 16^{\prime \prime}$ from the case for 10 seconds
POLARITY: Cathode indicated by polarity band MOUNTING POSITION: Any

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Max. Steady State Power Dissipation @ $\mathrm{T}_{\mathrm{L}}=75^{\circ} \mathrm{C}$, Lead Length $=3 / 8^{\prime \prime}$ Derate above $75^{\circ} \mathrm{C}$	P_{D}	3	W
Steady State Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ Derate above $50^{\circ} \mathrm{C}$	P_{D}	1	W
Operating and Storage Temperature Range		24	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

[^0]ON Semiconductor ${ }^{\circledR}$
www.onsemi.com
N59xxB = Device Number
YY = Year
WW = Work Week
= Pb-Free Package
ORDERING INFORMATION

Device	Package	Shipping †
1N59xxB, G	Axial Lead (Pb-Free)	2000 Units/Box
1N59xxBRL, G	Axial Lead (Pb-Free)	6000/Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

1N5913B Series

ELECTRICAL CHARACTERISTICS
($\mathrm{T}_{\mathrm{L}}=30^{\circ} \mathrm{C}$ unless otherwise noted,
$\mathrm{V}_{\mathrm{F}}=1.5 \mathrm{~V}$ Max @ $\mathrm{I}_{\mathrm{F}}=200$ mAdc for all types)

Symbol	Parameter
V_{Z}	Reverse Zener Voltage @ I_{ZT}
I_{ZT}	Reverse Current
Z_{ZT}	Maximum Zener Impedance $@ \mathrm{I}_{\mathrm{ZT}}$
I_{ZK}	Reverse Current
Z_{ZK}	Maximum Zener Impedance @ I_{ZK}
I_{R}	Reverse Leakage Current @ V_{R}
V_{R}	Breakdown Voltage
I_{F}	Forward Current
V_{F}	Forward Voltage @ I_{F}
I_{ZM}	Maximum DC Zener Current

1N5913B Series

ELECTRICAL CHARACTERISTICS $\left(T_{L}=30^{\circ} \mathrm{C}\right.$ unless otherwise noted, $\mathrm{V}_{\mathrm{F}}=1.5 \mathrm{~V}$ Max $@ \mathrm{I}_{\mathrm{F}}=200 \mathrm{mAdc}$ for all types $)$

Device ${ }^{\dagger}$ (Note 1)	Device Marking	Zener Voltage (Note 2)				Zener Impedance (Note 3)			Leakage Current		IzM
		V_{Z} (Volts)			$\frac{@ I_{\mathrm{ZT}}}{\mathrm{~mA}}$	$\frac{\mathrm{Z}_{\mathbf{Z T}} @ \mathrm{I}_{\mathrm{ZT}}}{\Omega}$	$\mathbf{Z}_{\mathbf{Z k}}$ @ $\mathrm{I}_{\text {zk }}$		$\mathrm{I}_{\mathrm{R}} @ \mathrm{~V}_{\mathrm{R}}$		
		Min	Nom	Max			$\boldsymbol{\Omega}$	mA	$\mu \mathrm{A}$ Max	Volts	mA
1N5913B, G	1N5913B	3.14	3.3	3.47	113.6	10	500	1	100	1	454
1N5917B, G	1N5917B	4.47	4.7	4.94	79.8	5	500	1	5	1.5	319
1N5919B, G	1N5919B	5.32	5.6	5.88	66.9	2	250	1	5	3	267
1N5920B, G	1N5920B	5.89	6.2	6.51	60.5	2	200	1	5	4	241
1N5921B, G	1N5921B	6.46	6.8	7.14	55.1	2.5	200	1	5	5.2	220
1N5923B, G	1N5923B	7.79	8.2	8.61	45.7	3.5	400	0.5	5	6.5	182
1N5924B, G	1N5924B	8.65	9.1	9.56	41.2	4	500	0.5	5	7	164
1N5925B, G	1N5925B	9.50	10	10.50	37.5	4.5	500	0.25	5	8	150
1N5926B, G	1N5926B	10.45	11	11.55	34.1	5.5	550	0.25	1	8.4	136
1N5927B, G	1N5927B	11.40	12	12.60	31.2	6.5	550	0.25	1	9.1	125
1N5929B, G	1N5929B	14.25	15	15.75	25.0	9	600	0.25	1	11.4	100
1N5930B, G	1N5930B	15.20	16	16.80	23.4	10	600	0.25	1	12.2	93
1N5931B, G	1N5931B	17.10	18	18.90	20.8	12	650	0.25	1	13.7	83
1N5932B, G	1N5932B	19.00	20	21.00	18.7	14	650	0.25	1	15.2	75
1N5933B, G	1N5933B	20.90	22	23.10	17.0	17.5	650	0.25	1	16.7	68
1N5934B, G	1N5934B	22.80	24	25.20	15.6	19	700	0.25	1	18.2	62
1N5935B, G	1N5935B	25.65	27	28.35	13.9	23	700	0.25	1	20.6	55
1N5936B, G	1N5936B	28.50	30	31.50	12.5	28	750	0.25	1	22.8	50
1N5937B, G	1N5937B	31.35	33	34.65	11.4	33	800	0.25	1	25.1	45
1N5938B, G	1N5938B	34.20	36	37.80	10.4	38	850	0.25	1	27.4	41
1N5940B, G	1N5940B	40.85	43	45.15	8.7	53	950	0.25	1	32.7	34
1N5941B, G	1N5941B	44.65	47	49.35	8.0	67	1000	0.25	1	35.8	31
1N5942B, G	1N5942B	48.45	51	53.55	7.3	70	1100	0.25	1	38.8	29
1N5943B, G	1N5943B	53.20	56	58.80	6.7	86	1300	0.25	1	42.6	26
1N5944B, G	1N5944B	58.90	62	65.10	6.0	100	1500	0.25	1	47.1	24
1N5946B, G	1N5946B	71.25	75	78.75	5.0	140	2000	0.25	1	56	20
1N5947B, G	1N5947B	77.90	82	86.10	4.6	160	2500	0.25	1	62.2	18
1N5948B, G	1N5948B	86.45	91	95.55	4.1	200	3000	0.25	1	69.2	16
1N5950B, G	1N5950B	104.5	110	115.5	3.4	300	4000	0.25	1	83.6	13
1N5951B, G	1N5951B	114	120	126	3.1	380	4500	0.25	1	91.2	12
1N5952B, G	1N5952B	123.5	130	136.5	2.9	450	5000	0.25	1	98.8	11
1N5953B, G	1N5953B	142.5	150	157.5	2.5	600	6000	0.25	1	114	10
1N5954B, G	1N5954B	152	160	168	2.3	700	6500	0.25	1	121.6	9
1N5955B, G	1N5955B	171	180	189	2.1	900	7000	0.25	1	136.8	8
1N5956B, G	1N5956B	190	200	210	1.9	1200	8000	0.25	1	152	7

Devices listed in bold, italic are ON Semiconductor Preferred devices. Preferred devices are recommended choices for future use and best overall value.
\dagger The "G" suffix indicates Pb - Free package available.

1. TOLERANCE AND TYPE NUMBER DESIGNATION

Tolerance designation - device tolerance of $\pm 5 \%$ are indicated by a "B" suffix.
2. ZENER VOLTAGE $\left(V_{Z}\right)$ MEASUREMENT

ON Semiconductor guarantees the zener voltage when measured at 90 seconds while maintaining the lead temperature $\left(\mathrm{T}_{\mathrm{L}}\right)$ at $30^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$, 3/8" from the diode body.
3. ZENER IMPEDANCE $\left(Z_{z}\right)$ DERIVATION

The zener impedance is derived from 60 seconds $A C$ voltage, which results when an $A C$ current having an rms value equal to 10% of the DC zener current (I_{ZT} or I_{ZK}) is superimposed on I_{ZT} or I_{ZK}.

Figure 1. Power Temperature Derating Curve

Figure 2. Typical Thermal Response L, Lead Length = 3/8 Inch

Figure 3. Maximum Surge Power

Figure 4. Typical Reverse Leakage

1N5913B Series

APPLICATION NOTE

Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended:

Lead Temperature, T_{L}, should be determined from:

$$
T_{L}=\theta_{L A} P_{D}+T_{A}
$$

θ_{LA} is the lead-to-ambient thermal resistance $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ and P_{D} is the power dissipation. The value for $\theta_{\text {LA }}$ will vary and depends on the device mounting method. $\theta_{\text {LA }}$ is generally $30-40^{\circ} \mathrm{C} / \mathrm{W}$ for the various clips and tie points in common use and for printed circuit board wiring.

The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of T_{L}, the junction temperature may be determined by:

$$
\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{L}}+\Delta \mathrm{T}_{\mathrm{JL}}
$$

$\Delta \mathrm{T}_{\mathrm{JL}}$ is the increase in junction temperature above the lead temperature and may be found from Figure 2 for a train of power pulses $(\mathrm{L}=3 / 8 \mathrm{inch})$ or from Figure 10 for dc power.

$$
\Delta \mathrm{T}_{\mathrm{JL}}=\theta_{\mathrm{JL}} \mathrm{P}_{\mathrm{D}}
$$

For worst-case design, using expected limits of I_{Z}, limits of P_{D} and the extremes of $T_{J}\left(\Delta T_{J}\right)$ may be estimated. Changes in voltage, V_{Z}, can then be found from:

$$
\Delta \mathrm{V}=\theta_{\mathrm{VZ}} \Delta \mathrm{~T}_{\mathrm{J}}
$$

θ_{VZ}, the zener voltage temperature coefficient, is found from Figures 5 and 6.

Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible.

Data of Figure 2 should not be used to compute surge capability. Surge limitations are given in Figure 3. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 3 be exceeded.

TEMPERATURE COEFFICIENT RANGES
(90% of the Units are in the Ranges Indicated)

Figure 5. Units To 12 Volts

Figure 6. Units 10 To 400 Volts

ZENER VOLTAGE versus ZENER CURRENT
(Figures 7, 8 and 9)

Figure 7. $\mathrm{V}_{\mathrm{Z}}=3.3$ thru 10 Volts

Figure 9. $\mathrm{V}_{\mathrm{Z}}=100$ thru 400 Volts

Figure 8. $\mathrm{V}_{\mathrm{Z}}=12$ thru 82 Volts

Figure 10. Typical Thermal Resistance

AXIAL LEAD
CASE 59-10
ISSUE U
DATE 15 FEB 2005

notes:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. ALL RULES AND NOTES ASSOCIATED WITH JEDEC DO-41 OUTLINE SHALL APPLY
4. POLARITY DENOTED BY CATHODE BAND
5. POLARITY DENOTED BY CATHODE BAND.
6. LEAD DIAMETER NOT CONTROLLED WITHIN LEAD DIAME
DIMENSION.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.161	0.205	4.10	5.20
B	0.079	0.106	2.00	2.70
D	0.028	0.034	0.71	0.86
F	---	0.050	---	1.27
K	1.000	---	25.40	---

GENERIC MARKING DIAGRAM*

STYLE 1:
PIN 1. CATHODE (POLARITY BAND) 2. ANODE

STYLE 2:
No POLARITY

STYLE 1

xxx	$=$ Specific Device Code
A	$=$ Assembly Location
YY	$=$ Year
WW	$=$ Work Week

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present.

| DOCUMENT NUMBER: | 98ASB42045B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | AXIAL LEAD | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

ON Semiconductor:
1N5913B 1N5913BG 1N5913BRL 1N5913BRLG 1N5917BRL 1N5917BRLG 1N5919B 1N5919BG 1N5919BRL
1N5919BRLG 1N5920B 1N5920BG 1N5920BRL 1N5920BRLG 1N5921B 1N5921BG 1N5921BRL 1N5921BRLG
1N5923BRL 1N5923BRLG 1N5924B 1N5924BG 1N5924BRL 1N5924BRLG 1N5925BRL 1N5925BRLG 1N5927B
1N5927BG 1N5927BRL 1N5927BRLG 1N5929B 1N5929BG 1N5929BRL 1N5929BRLG 1N5930BRL
1N5930BRLG 1N5931B 1N5931BG 1N5931BRL 1N5931BRLG 1N5932BRL 1N5932BRLG 1N5934B 1N5934BG
1N5934BRL 1N5934BRLG 1N5935B 1N5935BG 1N5936B 1N5936BG 1N5936BRL 1N5936BRLG 1N5937B
1N5937BG 1N5937BRL 1N5937BRLG 1N5938B 1N5938BG 1N5938BRL 1N5938BRLG 1N5940BRL
1N5940BRLG 1N5941B 1N5941BG 1N5941BRL 1N5941BRLG 1N5942BRL 1N5942BRLG 1N5946B 1N5946BG
1N5946BRL 1N5946BRLG 1N5948BRL 1N5948BRLG 1N5950BRLG 1N5951BRL 1N5951BRLG 1N5952BRLG
1N5953B 1N5953BG 1N5953BRL 1N5953BRLG 1N5955B 1N5955BG 1N5955BRL 1N5955BRLG 1N5956B
1N5956BG 1N5956BRL 1N5956BRLG 1N5935BRLG

[^0]: *For additional information on our Pb- Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

