INTEGRATED CIRCUITS

Product specification Supersedes data of 1997 Feb 12 IC24 Data Handbook 1998 Apr 20

Philips Semiconductors

74LVU04

FEATURES

- Wide operating voltage: 1.0 to 5.5 V
- Optimized for Low Voltage applications: 1.0 to 3.6 V
- Accepts TTL input levels between V_{CC} = 2.7 V and V_{CC} = 3.6 V
- Typical V_{OLP} (output ground bounce) < 0.8 V at V_{CC} = 3.3 V, $T_{amb} = 25^{\circ}C.$
- Typical V_{OHV} (output V_{OH} undershoot) > 2 V at V_{CC} = 3.3 V, $T_{amb} = 25^{\circ}C.$
- Output capability: standard
- I_{CC} category: SSI

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5$ ns

DESCRIPTION

The 74LVU04 is a low-voltage, Si-gate CMOS device and is pin compatible with the 74HCU04.

The 74LVU04 is a general purpose hex inverter. Each of the six inverters is a single stage with unbuffered outputs.

SYMBOL PARAMETER		CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH} Propagation delay nA to nY		C _L = 15 pF; V _{CC} = 3.3 V	6	ns
Cl	Input capacitance		3.5	pF
C _{PD}	Power dissipation capacitance per gate	Notes 1, 2	18	pF

NOTES:

- 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W) P_D = C_{PD} × V_{CC}² × f_i + \sum (C_L × V_{CC}² × f_o) where: f_i = input frequency in MHz; C_L = output load capacitance in pF; f_o = output frequency in MHz; V_{CC} = supply voltage in V; \sum (C_L × V_{CC}² × f_o) = sum of the outputs. 2. The condition is V_I = GND to V_{CC}.

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #
14-Pin Plastic DIL	–40°C to +125°C	74LVU04 N	74LVU04 N	SOT27-1
14-Pin Plastic SO	–40°C to +125°C	74LVU04 D	74LVU04 D	SOT108-1
14-Pin Plastic SSOP Type II	–40°C to +125°C	74LVU04 DB	74LVU04 DB	SOT337-1
14-Pin Plastic TSSOP Type I	-40°C to +125°C	74LVU04 PW	74LVU04PW DH	SOT402-1

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1, 3, 5, 9, 11, 13	1A – 6A	Data inputs
2, 4, 6, 8, 10, 12	1Y – 6Y	Data outputs
7	GND	Ground (0 V)
14	V _{CC}	Positive supply voltage

FUNCTION TABLE

INPUTS	OUTPUTS		
nA	nY		
L	Н		
Н	L		

NOTES:

H = HIGH voltage level L = LOW voltage level

74LVU04

PIN CONFIGURATION

LOGIC SYMBOL (IEEE/IEC)

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNIT
V _{CC}	DC supply voltage	See Note1	1.0	3.3	5.5	V
VI	Input voltage		0	-	V _{CC}	V
Vo	Output voltage		0	-	V _{CC}	V
T _{amb}	Operating ambient temperature range in free air	See DC and AC characteristics	-40 -40		+85 +125	°C
t _r , t _f	Input rise and fall times	$V_{CC} = 1.0V \text{ to } 2.0V \\ V_{CC} = 2.0V \text{ to } 2.7V \\ V_{CC} = 2.7V \text{ to } 3.6V \\ V_{CC} = 3.6V \text{ to } 5.5V$	- - - -	- - - -	500 200 100 50	ns/V

NOTE:

1. The LV is guaranteed to function down to V_{CC} = 1.0V (input levels GND or V_{CC}); DC characteristics are guaranteed from V_{CC} = 1.2V to V_{CC} = 5.5V.

LOGIC SYMBOL

SCHEMATIC DIAGRAM (ONE INVERTER)

74LVU04

ABSOLUTE MAXIMUM RATINGS^{1, 2}

In accordance with the Absolute Maximum Rating System (IEC 134). Voltages are referenced to GND (ground = 0V).

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
$\pm I_{IK}$	DC input diode current	$V_{I} < -0.5 \text{ or } V_{I} > V_{CC} + 0.5 V$	20	mA
± I _{OK}	DC output diode current	$V_{\rm O}$ < -0.5 or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5V	50	mA
$\pm I_{O}$	DC output source or sink current – standard outputs	$-0.5V < V_{O} < V_{CC} + 0.5V$	25	mA
± I _{GND} , ± I _{CC}	DC V _{CC} or GND current for types with – standard outputs		50	mA
T _{stg}	Storage temperature range		-65 to +150	°C
P _{TOT}	Power dissipation per package – plastic DIL – plastic mini-pack (SO) – plastic shrink mini-pack (SSOP and TSSOP)	for temperature range: -40 to +125°C above +70°C derate linearly with 12 mW/K above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	750 500 400	mW

NOTE:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltages are referenced to GND (ground = 0V).

			LIMITS						
SYMBOL	PARAMETER	PARAMETER TEST CONDITIONS		-40°C to +85°C			-40°C to +125°C		
			MIN	TYP ¹	MAX	MIN	MAX		
		$V_{CC} = 1.2V$	1.0			1.0			
V	HIGH level Input	$V_{CC} = 2.0 V$	1.6			1.6		V	
I [™] IH	voltage	V _{CC} = 2.7 to 3.6V	2.4			2.4		, v	
		V _{CC} = 4.5 to 5.5V	0.8 * V _{CC}			0.8 * V _{CC}			
		$V_{CC} = 1.2V$			0.2		0.2		
Ma	LOW level Input	$V_{CC} = 2.0 V$			0.4		0.4	V	
VIL	voltage	V _{CC} = 2.7 to 3.6V			0.5		0.5	v	
		V _{CC} = 4.5 to 5.5			0.2 * V _{CC}		0.2 * V _{CC}		
		$V_{CC} = 1.2V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$		1.2					
		$V_{CC} = 2.0V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$	1.8	2.0		1.8			
V _{OH}	HIGH level output	$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$	2.5	2.7		2.5		V	
	Voltage	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$	2.8	3.0		2.8			
		$V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$	4.3	4.5		4.3			
Maria	HIGH level output	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 6mA$	2.40	2.82		2.20		V	
⊻он	voltage	$V_{CC} = 4.5 \text{V}; \text{V}_{\text{I}} = \text{V}_{\text{IH}} \text{ or } \text{V}_{\text{IL};} - \text{I}_{\text{O}} = 12 \text{mA}$	3.60	4.20		3.50		v	
		V_{CC} = 1.2V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		0					
		$V_{CC} = 2.0V; V_I = V_{IH} \text{ or } V_{IL;} I_O = 100 \mu A$		0	0.2		0.2		
V _{OL}	LOW level output	$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL;} I_O = 100 \mu A$		0	0.2		0.2	V	
	Voltage	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} I_O = 100 \mu A$		0	0.2		0.2	1	
		$V_{CC} = 4.5 \text{V}; \text{V}_{\text{I}} = \text{V}_{\text{IH}} \text{ or } \text{V}_{\text{IL};} \text{I}_{\text{O}} = 100 \mu \text{A}$		0	0.2		0.2		

74LVU04

DC ELECTRICAL CHARACTERISTICS (Continued)

		PARAMETER TEST CONDITIONS		LIMITS				
SYMBOL	PARAMETER			-40°C to +85°C			-40°C to +125°C	
			MIN	TYP ¹	MAX	MIN	MAX	
Va	LOW level output	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 6mA$		0.25	0.40		0.50	V
VOL voltage	$V_{CC} = 4.5 V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 12 \text{mA}$		0.35	0.55		0.65	v	
±lı	Input leakage current	$V_{CC} = 5.5V; V_I = V_{CC} \text{ or } GND$			1.0		1.0	μA
I _{CC}	Quiescent supply current	$V_{CC} = 5.5V; V_I = V_{CC} \text{ or GND}; I_O = 0$			20.0		40.0	μΑ
ΔI _{CC}	Additional quiescent supply current per input	V_{CC} = 2.7V to 3.6V; V_{I} = V_{CC} –0.6V			500		850	μΑ

NOTE:

1. All typical values are measured at $T_{amb} = 25^{\circ}C$.

AC CHARACTERISTICS

 $GND = 0V; t_r = t_f = 2.5ns; C_L = 50pF; R_L = 500\Omega$

			CONDITION		LIMITS				
SYMBOL PARAMETER		WAVEFORM	CONDITION	–40 to +85 °C			–40 to +125 °C		UNIT
			V _{CC} (V)	MIN	TYP ¹	MAX	MIN	MAX	
t _{PHL/PLH} Propagation delay nA to nY			1.2		35				
	Figure 1	2.0		12	14		17		
		2.7		9	10		13	ns	
			3.0 to 3.6		7 ²	8		10	
			4.5 to 5.5			7		9	

NOTES:

1. Unless otherwise stated, all typical values are measured at $T_{amb} = 25^{\circ}C$

2. Typical values are measured at V_{CC} = 3.3 V.

AC WAVEFORMS

 V_M = 1.5 V at $V_{CC}\,\geq\,2.7$ V and ≤3.6 V

 V_M = 0.5 × V_{CC} at V_{CC} < 2.7 V and \geq 4.5 V V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

Figure 1. Input (nA) to output (nY) propagation delays and output transition times.

TYPICAL TRANSFER CHARACTERISTICS

Figure 2.

74LVU04

TYPICAL TRANSFER CHARACTERISTICS (Continued)

Figure 4.

Figure 5. Test set-up for measuring forward transconductance $g_{fs} = di_0/dv_i$ at v_0 is constant (see also graph Figure 6).

Figure 6. Typical forward transconductance g_{fs} as a function of the supply voltage V_{CC} at T_{amb} = 25°C.

74LVU04

APPLICATION INFORMATION

- Some applications for the 74LVU04 are:
- Linear amplifier (see Figure 7)
- In crystal oscillator designs (see Figure 8)
- Astable multivibrator (see Figure 9)

Figure 7. LVU04 used as a linear amplifier.

EXTERNAL COMPONENTS FOR RESONATOR (f < 1 mHz)

FREQUENCY (kHz)	R ₁ (MΩ)	R ₂ (KΩ)	C ₁ (pF)	C ₂ (pF)
10 15.9	2.2	220	56	20
16 24.9	2.2	220	56	10
25 54.9	2.2	100	56	10
55 129.9	2.2	100	47	5
130 199.9	2.2	47	47	5
200 349.9	2.2	47	47	5
350 600	2.2	47	47	5

WHERE:

All values given are typical and must be used as an initial set-up.

Figure 8. Crystal oscillator configuration.

OPTIMUM VALUE FOR R2

FREQUENCY (MHz)	R ₂ (kΩ)	Optimum			
3	2.0 8.0	Minimum required ${\rm I}_{\rm CC}$ Minimum influence due to change in ${\rm V}_{\rm CC}$			
6	1.0 4.7	Minimum I _{CC} Minimum influence by V _{CC}			
10	0.5 2.0	Minimum I _{CC} Minimum influence by V _{CC}			
14	0.5 1.0	Minimum I _{CC} Minimum influence by V _{CC}			
> 14	Repla	Replace R_2 by C_3 with a typical value of 35 pF			

74LVU04

Figure 9. LVU04 used as an astable multivibrator.

Figure 10. Typical input capacitance as function of input voltage.

Note for Application Information

All values given are typical unless otherwise specified.

DIP14: plastic dual in-line package; 14 leads (300 mil)

74LVU04

Note

inches

0.17

0.020

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

0.13

0.068

0.044

0.021

0.015

0.014

0.009

0.77

0.73

0.26

0.24

0.10

0.30

0.14

0.12

0.32

0.31

0.39

0.33

0.01

0.087

OUTLINE		REFERENCES				
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT27-1	050G04	MO-001AA				-92-11-17 95-03-11

SOT27-1

74LVU04

74LVU04

74LVU04

OUTLINE VERSION	REFERENCES				EUROPEAN	
	IEC	JEDEC	EIAJ		PROJECTION	1550E DATE
SOT402-1		MO-153				-94-07-12 95-04-04

74LVU04

NOTES

74LVU04

DEFINITIONS					
Data Sheet Identification	Product Status	Definition			
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.			
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.			
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.			

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code

Document order number:

Date of release: 05-96 9397-750-04405

Let's make things better.

